What happened on your worst birthday?
  • lefty7283 lefty7283 Now 100%

    Got the flu and had to cancel my birthday movie party. Most of my friends went to go see the movie anyway. It was the Bee Movie

    4
  • Polaris Dawn | Views from Dragon in flight
  • lefty7283 lefty7283 Now 100%

    That shot of the forward thrusters is great!

    3
  • Starlink is increasingly interfering with astronomy, scientists say
  • lefty7283 lefty7283 Now 100%

    What focal length do you normally shoot at? My rig is at 610mm and I get satellite trails mostly around dusk/dawn, but they all get rejected out during stacking

    9
  • HTC VIVE Launches VIVE Focus Vision XR Headset for Gaming
  • lefty7283 lefty7283 Now 100%

    Guess I’ll be sticking with mine for a little bit longer. Was really hoping for pancake lenses in this

    2
  • "Initials" by "Florian Körner", licensed under "CC0 1.0". / Remix of the original. - Created with dicebear.comInitialsFlorian Körnerhttps://github.com/dicebear/dicebearMI
    Jump
    Sky thing happen
  • lefty7283 lefty7283 Now 100%

    Some nice colors in the sky If you’re north enough. Sadly I doubt this will be as strong as the aurora back in May, but maybe one day well get them down in Atlanta again

    6
  • NGC 4490 - The Cocoon Galaxy [OC]
  • lefty7283 lefty7283 Now 100%

    NGC 4490 is a galaxy colliding with the smaller NGC 4485 galaxy, and both are about 25 million light years away. This image was taken with a monochrome camera through filters for luminance (all visible light), red, green, blue, and Hydrogen-alpha (656nm), which were combined into a color image. The Hydrogen-alpha was combined with red (described below) to make the HaLRGB image. The pink Ha regions are star forming nebulae within the galaxies. This got cropped out of the final pic, but I ended getting some gorgeous diffraction spikes on this star near the edge of the full FOV

    Places where I host my other images:

    Flickr | Instagram


    Equipment:

    • TPO 6" F/4 Imaging Newtonian

    • Orion Sirius EQ-G

    • ZWO ASI1600MM-Pro

    • Skywatcher Quattro Coma Corrector

    • ZWO EFW 8x1.25"/31mm

    • Astronomik LRGB+CLS Filters- 31mm

    • Astrodon 31mm Ha 5nm, Oiii 3nm, Sii 5nm

    • Agena 50mm Deluxe Straight-Through Guide Scope

    • ZWO ASI-120MC for guiding

    • Moonlite Autofocuser

    Acquisition: 27 hours 37 minutes (Camera at half Unity Gain, -15°C)

    • Ha - 128x360"

    • Lum - 464x60"

    • Red - 152x60"

    • Green - 150x60"

    • Blue - 123x60"

    • Flats- 30 per filter

    • 24 JimmyFlats per broadband filter

    Capture Software:

    PixInsight Processing:

    • BatchPreProcessing (with premade JimmyFlats)

    • StarAlignment

    • Blink

    • ImageIntegration

    • DrizzleIntegration (2x, Var β=1.5)

    • DynamicCrop

    • DynamicBackgroundExtraction

    duplicated each image and removed stars via StarXterminator. Ran DBE to generate background model. model subtracted from original pic using the following PixelMath (math courtesy of /u/jimmythechicken1)

    $T * med(model) / model

    Luminance:

    • BlurXTerminator

    • ArcsinhStretch + histogramtransformation to bring nonlinear

    RGB:

    • ChannelCombinaiton to combine monochrome R, G, B stacks into color image

    • SpectroPhotometricColorCalibration

    • BlurXTerminator (correct only mode)

    • HSV Repair

    making clean Ha

    loosely following this guide

    This basically subtracts any broadband signal from the Ha pic, leaving only the Ha emission, which is then combined in with the red and a little bit of the blue channels

    • PixelMath to isolate just Ha

    Ha-Q * (Red-med (Red)), Q=0.75

    • PixelMath to add Ha into RGB image

    Red = $T+B*(Ha_Clean - med(Ha_Clean))

    Green = $T

    Blue = $T+B0.2(Ha_Clean - med(Ha_Clean))

    B variable = 0.6 (this controls how strongly the Ha is added)

    Nonlinear

    • ArcsinhStretch + histogramtransformation to bring HaRGB image nonlinear

    • MLT for large scale chrominance noise reduction

    • shitloads of curve transformations to adjust lightness, contrast, saturation, etc (with various luminance and star masks)

    • slight SCNR to remove some greens

    • LRGBCombination with stretched Luminance

    • DeepSNR

    • more curves

    • ColorSaturation to slightly desaturate the Ha regions (they were very pink compared to the rest of the galaxy

    • slight noisexterminator

    • LocalHistogramEqualization

    • even more curves

    • Resample to 75%

    • DynamicCrop onto just the galaxy

    • annotation

    4
  • NGC 4490 - The Cocoon Galaxy
  • lefty7283 lefty7283 Now 100%

    NGC 4490 is a galaxy colliding with the smaller NGC 4485 galaxy, and both are about 25 million light years away. This image was taken with a monochrome camera through filters for luminance (all visible light), red, green, blue, and Hydrogen-alpha (656nm), which were combined into a color image. The Hydrogen-alpha was combined with red (described below) to make the HaLRGB image. The pink Ha regions are star forming nebulae within the galaxies. This got cropped out of the final pic, but I ended getting some gorgeous diffraction spikes on this star near the edge of the full FOV

    Places where I host my other images:

    Flickr | Instagram


    Equipment:

    • TPO 6" F/4 Imaging Newtonian

    • Orion Sirius EQ-G

    • ZWO ASI1600MM-Pro

    • Skywatcher Quattro Coma Corrector

    • ZWO EFW 8x1.25"/31mm

    • Astronomik LRGB+CLS Filters- 31mm

    • Astrodon 31mm Ha 5nm, Oiii 3nm, Sii 5nm

    • Agena 50mm Deluxe Straight-Through Guide Scope

    • ZWO ASI-120MC for guiding

    • Moonlite Autofocuser

    Acquisition: 27 hours 37 minutes (Camera at half Unity Gain, -15°C)

    • Ha - 128x360"

    • Lum - 464x60"

    • Red - 152x60"

    • Green - 150x60"

    • Blue - 123x60"

    • Flats- 30 per filter

    • 24 JimmyFlats per broadband filter

    Capture Software:

    PixInsight Processing:

    • BatchPreProcessing (with premade JimmyFlats)

    • StarAlignment

    • Blink

    • ImageIntegration

    • DrizzleIntegration (2x, Var β=1.5)

    • DynamicCrop

    • DynamicBackgroundExtraction

    duplicated each image and removed stars via StarXterminator. Ran DBE to generate background model. model subtracted from original pic using the following PixelMath (math courtesy of /u/jimmythechicken1)

    $T * med(model) / model

    Luminance:

    • BlurXTerminator

    • ArcsinhStretch + histogramtransformation to bring nonlinear

    RGB:

    • ChannelCombinaiton to combine monochrome R, G, B stacks into color image

    • SpectroPhotometricColorCalibration

    • BlurXTerminator (correct only mode)

    • HSV Repair

    making clean Ha

    loosely following this guide

    This basically subtracts any broadband signal from the Ha pic, leaving only the Ha emission, which is then combined in with the red and a little bit of the blue channels

    • PixelMath to isolate just Ha

    Ha-Q * (Red-med (Red)), Q=0.75

    • PixelMath to add Ha into RGB image

    Red = $T+B*(Ha_Clean - med(Ha_Clean))

    Green = $T

    Blue = $T+B0.2(Ha_Clean - med(Ha_Clean))

    B variable = 0.6 (this controls how strongly the Ha is added)

    Nonlinear

    • ArcsinhStretch + histogramtransformation to bring HaRGB image nonlinear

    • MLT for large scale chrominance noise reduction

    • shitloads of curve transformations to adjust lightness, contrast, saturation, etc (with various luminance and star masks)

    • slight SCNR to remove some greens

    • LRGBCombination with stretched Luminance

    • DeepSNR

    • more curves

    • ColorSaturation to slightly desaturate the Ha regions (they were very pink compared to the rest of the galaxy

    • slight noisexterminator

    • LocalHistogramEqualization

    • even more curves

    • Resample to 75%

    • DynamicCrop onto just the galaxy

    • annotation

    4
  • The Horsehead Nebula
  • lefty7283 lefty7283 Now 100%

    It’s an artifact from the camera. The ASI1600 has microlenses over each pixel on the sensor, which makes this pattern around bright stars

    4
  • The Horsehead Nebula
  • lefty7283 lefty7283 Now 100%

    The Horsehead Nebula is a dark nebula about 1400ly away from us in the constellation Orion. The Bright star near it is Alnitak, and it one of the stars that makes up Orion's Belt. Because this is one of the brightest stars that people photograph when shooting DSOs, it often can result in unwanted halos, which are present in my RGB filters. I was able to edit the halos out to a level I felt was acceptable (see processing info below), however there still is some color fringing/artifacts on the edge of the halos. Also the bottom left of Alnitak is the Flame Nebula, which is just a nebula that happens to be in the foreground to the horsehead. Captured over 5 nights from February 14-20, 2022 from my Bortle 6 driveway.

    Places where I host my other images:

    Instagram | Flickr


    Equipment:

    • TPO 6" F/4 Imaging Newtonian

    • Orion Sirius EQ-G

    • ZWO ASI1600MM-Pro

    • Skywatcher Quattro Coma Corrector

    • ZWO EFW 8x1.25"/31mm

    • Astronomik LRGB+CLS Filters- 31mm

    • Astrodon 31mm Ha 5nm, Oiii 3nm, Sii 5nm

    • Agena 50mm Deluxe Straight-Through Guide Scope

    • ZWO ASI-120mc for guiding

    • Moonlite Autofocuser

    Acquisition: 12 hours 6 minutes (Camera at Unity Gain, -20°C)

    • Lum- 251x60"

    • Ha- 67x300"

    • Red- 33x90"

    • Green- 31x60"

    • Blue- 29x60"

    • Darks- 30

    • Flats- 30 per filter

    Capture Software:

    • Captured using N.I.N.A. and PHD2 for guiding and dithering.

    PixInsight Processing:

    • BatchPreProcessing

    • SubframeSelector

    • StarAlignment

    • Blink

    • ImageIntegration

    • DrizzleIntegration (2x, Var β=1.5)

    Linear:

    • DynamicCrop

    • Automatic and Dynamic Background extractions

    RGB:

    • ChannelCombination to map monochrome R, G, and B images into a color image

    • PhotometricColorCalibration

    • Slight SCNR green

    • HSV repair

    • ArcsinhStretch + HistogramTransformation to bring nonlinear

    Luminance:

    • PixelMath to combine Ha and luminance stacks to make super-luminance image (to be used as the luminance layer going forward)

    0.7*Ha + 0.3*Lum

    • EZ Decon

    • NoiseXTerminator

    • ArcsinhStretch + HistogramTransformation to bring nonlinear

    Nonlinear:

    • Created two circle masks per this guide. SCNR + curve tweaks to mitigate the halos from my RGB filters

    • LRGBCombination with SuperLum

    • Ungodly amounts of curve transformations to further mitigate the halos, as well as just general curves for lightness, saturation, contrast, hues, etc.

    • ColorSaturation

    • Extract L > LRGBCombination for chrominance noise reduction

    • LocalHistogramEqualization

    • EZ Star reduction

    • NoiseGenerator to add noise into reduced star areas

    • another round of LHE

    • more curves

    • CloneStamp to remove a couple of weirdly artifacted stars

    • even more curves

    • Resample to 60%

    • Annotation

    2
  • Married people, where do you land?
  • lefty7283 lefty7283 Now 100%

    I guess my astrophotography hobby has cancelled out my drinking and porn hobbies lol

    4
  • Budget setup
  • lefty7283 lefty7283 Now 100%

    If you're going into deep sky imaging, getting a solid tracking mount will be more important than a specific camera/lens. I'll be honest I haven't really bought new gear or looked at new equipment in the last few years, but this vid from Alaskan Astro is a great overview and recommendations for beginner setup (I see the 135mm f/2 has already been recommended in here lol). It's also worth checking out used equipment if you're on a budget. I've found some great deals on the cloudynights classifieds, craigslist, and FB marketplace when I was assembling my rig.

    Also since you want to use your camera for astro and normal photography, you can still use a H-alpha modded camera, but just use a custom white balance for non-astro shots. Personally I wouldn't worry too much about getting a modded cam if you're just starting out in the hobby, but it's something you may want to consider if you want to shoot a lot of emission nebulae

    1
  • https://blogs.nasa.gov/smallsatellites/2024/08/29/nasa-composite-booms-deploy-mission-sets-sail-in-space/

    Hopefully it'll be visible to us on the ground! https://heavens-above.com/PassSummary.aspx?satid=59588

    56
    0
    FAA grounds SpaceX after rocket falls over in flames at landing
  • lefty7283 lefty7283 Now 100%

    Iirc the original goal was ‘at least 10’ but maybe up to 100 flights for a booster. No way to really know without flying them a lot

    6
  • new.reddit has been removed
  • lefty7283 lefty7283 Now 100%

    It’s definitely real, at least for the amateur astronomy subs I (used to) mod. I suspect a lot of the traffic to askastrophotography or telescopes is from people googling stuff and browsing though mobile web, but since /r/astrophotography is just photos, most are just on the app

    7
  • new.reddit has been removed
  • lefty7283 lefty7283 Now 100%

    Probably varies a bit from sub to sub, but old reddit users are a clear minority. The vast majority use the app

    15
  • Pets Sunday - how are they doing?
  • lefty7283 lefty7283 Now 100%

    Mildew is trying to sleep in today

    1
  • NASA says astronauts stuck in space will not return on Boeing capsule, will wait for SpaceX craft
  • lefty7283 lefty7283 Now 100%

    NASA is still doing a seat exchange and launching Johnny Kim on the next Soyuz in March, but it looks like it’ll be just Russians on at least the next 2 Soyuz’s after that

    3
  • A "before" photo of T Coronae Borealis, the binary star system that's expected to go nova soon.
  • lefty7283 lefty7283 Now 100%

    with my luck it's gonna pop in november just after it sinks behind some trees for the season

    3
  • Supermoon vs Micromoon Size Comparison
  • lefty7283 lefty7283 Now 100%

    I made this comparison a while ago, and figured I'd share it since I've seen some headlines going around the last couple days...

    The Moon's orbit isn't a perfect circle, and at times is a little closer and a little farther away from Earth. It's called a supermoon when the moon is full and at its closest point, and a micromoon when its full and at its furthest point

    I wanted to make this comparison to highlight that the supermoon isn't really that much larger than normal. Personally I think the supermoon is overhyped for what it is, and that it's hard to tell visually that the moon is larger or smaller, unless you do a direct comparison like this. The moon can appear larger than normal when its close to the horizon, but the actual size of it is no different than if it was straight overhead: https://en.wikipedia.org/wiki/Moon_illusion

    The angular diameters and distances were taken from a planetarium program called Stellarium. I compared the pixel measurements of my photos to the values calculated by Stellarium, and the discrepancy was only 0.22%.

     

    Equipment:

    • TPO 6" F/4 Imaging Newtonian

    • ZWO ASI1600MM-Pro

    • Skywatcher Quattro Coma Corrector

    • ZWO EFW 8x1.25"/31mm

    • Astronomik LRGB+CLS Filters- 31mm

    • Moonlite Autofocuser

    Acquisition: (Camera at Unity Gain, -20°C for supermoon, -10°C for micromoon)

    • Astronomik Red filter used to combat atmospheric seeing

    • Exposure- 0.213ms for supermoon, 1.115ms for micromoon

    • 1000 frame capture for supermoon

    • 2000 frame capture for micromoon

    Capture Software:

    • Captured using Sharpcap and N.I.N.A. for filterwheel and focuser control

    Processing:

    • Supermoon: Best 10% of frames stacked in Autostakkert!3

    • Micromoon: Best 25% of frames stacked

    • Registax Wavelets for sharpening on both images

    • Level and curve adjustments in Photoshop

    • Images combined and annotated in Photoshop

    17
  • M92 Globular Cluster [OC]
  • lefty7283 lefty7283 Now 100%

    It may not be as big or well known as the other well known cluster in Hercules (M13), but it sure looks nice. Captured over 4 nights in July/August 2024 from a Bortle 9 zone

    Places where I host my other images:

    Instagram | Flickr


    Equipment:

    • TPO 6" F/4 Imaging Newtonian

    • Orion Sirius EQ-G

    • ZWO ASI1600MM-Pro

    • Skywatcher Quattro Coma Corrector

    • ZWO EFW 8x1.25"/31mm

    • Astronomik LRGB+CLS Filters- 31mm

    • Astrodon 31mm Ha 5nm, Oiii 3nm, Sii 5nm

    • Agena 50mm Deluxe Straight-Through Guide Scope

    • ZWO ASI-120MC for guiding

    • Moonlite Autofocuser

    Acquisition: 6 hours 55 minutes (Camera at half Unity Gain, -15°C)

    • Lum - 209x60"

    • Red - 78x60"

    • Green - 62x60"

    • Blue - 66x60"

    • Flats- 30 per filter

    • 24 JimmyFlats per filter

    Capture Software:

    PixInsight Processing:

    • BatchPreProcessing (with premade JimmyFlats)

    • StarAlignment

    • Blink

    • ImageIntegration

    • DrizzleIntegration (2x, Var β=1.5)

    • DynamicCrop

    • DynamicBackgroundExtraction

    duplicated each image and removed stars via StarXterminator. Ran DBE with a shitload of points to generate background model. model subtracted from original pic using the following PixelMath (math courtesy of /u/jimmythechicken1)

    $T * med(model) / model

    Luminance:

    • BlurXTerminator (correct only mode)

    • ArcsinhStretch + histogramtransformation to bring nonlinear

    RGB:

    • ChannelCombinaiton to combine monochrome R, G, B stacks into color image

    • BlurXTerminator (correct only mode)

    • SpectroPhotometricColorCalibration

    • HSV Repair

    • ArcsinhStretch + histogramtransformation to bring nonlinear

    • Curves to saturate it a little

    • MLT for large scale chrominance noise reduction

    Nonlinear:

    • LRGBCombination with stretched L as luminance

    • DeepSNR Noise reduction

    • Several CurveTransformations to adjust lightness, contrast, colors, saturation, etc.

    • Invert > SCNR > invert > SCNR to remove some greens and magentas

    • More curves

    • A little bit of noiseXterminator

    • DynamicCrop in on the clustert

    • Resample to 75%

    • Annotation

    7
  • M92 Globular Cluster
  • lefty7283 lefty7283 Now 100%

    It may not be as big or well known as the other well known cluster in Hercules (M13), but it sure looks nice. Captured over 4 nights in July/August 2024 from a Bortle 9 zone

    Places where I host my other images:

    Instagram | Flickr


    Equipment:

    • TPO 6" F/4 Imaging Newtonian

    • Orion Sirius EQ-G

    • ZWO ASI1600MM-Pro

    • Skywatcher Quattro Coma Corrector

    • ZWO EFW 8x1.25"/31mm

    • Astronomik LRGB+CLS Filters- 31mm

    • Astrodon 31mm Ha 5nm, Oiii 3nm, Sii 5nm

    • Agena 50mm Deluxe Straight-Through Guide Scope

    • ZWO ASI-120MC for guiding

    • Moonlite Autofocuser

    Acquisition: 6 hours 55 minutes (Camera at half Unity Gain, -15°C)

    • Lum - 209x60"

    • Red - 78x60"

    • Green - 62x60"

    • Blue - 66x60"

    • Flats- 30 per filter

    • 24 JimmyFlats per filter

    Capture Software:

    PixInsight Processing:

    • BatchPreProcessing (with premade JimmyFlats)

    • StarAlignment

    • Blink

    • ImageIntegration

    • DrizzleIntegration (2x, Var β=1.5)

    • DynamicCrop

    • DynamicBackgroundExtraction

    duplicated each image and removed stars via StarXterminator. Ran DBE with a shitload of points to generate background model. model subtracted from original pic using the following PixelMath (math courtesy of /u/jimmythechicken1)

    $T * med(model) / model

    Luminance:

    • BlurXTerminator (correct only mode)

    • ArcsinhStretch + histogramtransformation to bring nonlinear

    RGB:

    • ChannelCombinaiton to combine monochrome R, G, B stacks into color image

    • BlurXTerminator (correct only mode)

    • SpectroPhotometricColorCalibration

    • HSV Repair

    • ArcsinhStretch + histogramtransformation to bring nonlinear

    • Curves to saturate it a little

    • MLT for large scale chrominance noise reduction

    Nonlinear:

    • LRGBCombination with stretched L as luminance

    • DeepSNR Noise reduction

    • Several CurveTransformations to adjust lightness, contrast, colors, saturation, etc.

    • Invert > SCNR > invert > SCNR to remove some greens and magentas

    • More curves

    • A little bit of noiseXterminator

    • DynamicCrop in on the clustert

    • Resample to 75%

    • Annotation

    3
  • https://www.youtube.com/watch?v=jHP942Livy0

    Word of warning for those eating: there's a shot of some dirty dishwasher water at 10:35 [Follow up connextras video](https://www.youtube.com/watch?v=0Kp3bjm55xw)

    58
    4
    lefty7283 Now
    100 183

    lefty7283

    lemmy.world